aboutsummaryrefslogtreecommitdiff
path: root/module/c/parse.scm
blob: 7d11ea179e29837516cf499c65bf42a990b9f888 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
(define-module (c parse)
  :use-module (hnh util)
  :use-module (srfi srfi-1)
  :use-module (srfi srfi-71)
  :use-module (ice-9 match)
  :use-module ((rnrs io ports)
               :select (string->bytevector make-transcoder utf-8-codec))
  :use-module (rnrs bytevectors)
  :export (parse-lexeme-tree))

(define (permutations set)
  (concatenate
   (map (lambda (key)
          (map (lambda (o) (cons key o))
               (delete key set)))
        set)))

(define (symbol-concat pair)
  (cond [(null? (car pair)) (cdr pair)]
        [(null? (cdr pair)) (car pair)]
        [else (symbol-append (car pair) (cdr pair))]))

(define (parse-integer-suffix str)
  (define valid-sequences
    (delete 'dummy
            (lset-union eq? '(dummy)
                        (map symbol-concat (permutations '(() U L)))
                        (map symbol-concat (permutations '(() U LL))))))

  ;; => (LLU ULL LL LU UL L U)

  (aif (memv (string->symbol (string-upcase str))
          valid-sequences)
       (case (car it)
         [(LLU ULL) '(unsigned long long)]
         [(LU UL) '(unsigned long)]
         [(LL) '(long long)]
         [(L) '(long)]
         [(U) '(unsigned)])
       (scm-error 'c-parse-error "parse-integer-suffix"
                  "Invalid integer suffix ~s"
                  (list str) #f)))

(define (parse-float-suffix str)
  (case (string->symbol str)
    ((f F) '(float))
    ((l L) '(long double))))

(define (group-body->type vars)
  (concatenate
   (map
    (match-lambda (('variable var) (list (parse-lexeme-tree `(variable ,var))))
                  (('postfix ('variable var)
                             ('postfix-operator "*"))
                   (list (parse-lexeme-tree `(variable ,var))
                         '*))
                  (else (scm-error 'c-parse-error "parse-lexeme-tree"
                                   "Invalid token ~s in typecast form: ~s"
                                   (list else vars) #f)))
    vars)))

;; Takes a list of strings and integers, and merges it all into a single
;; bytevector representing a c string
(define* (string-fragments->c-string
          fragments optional: (transcoder (make-transcoder (utf-8-codec))))

  (define fragments-fixed
    (map (lambda (frag)
           (if (string? frag)
               (string->bytevector frag transcoder)
               frag))
         fragments))

  (define bv-length
    (fold (lambda (item sum) (+ sum (if (bytevector? item)
                                   (bytevector-length item)
                                   1)))
          0 fragments-fixed))

  (define bv (make-bytevector (1+ bv-length)))
  ;; trailing null byte
  (bytevector-u8-set! bv bv-length 0)
  (fold (lambda (item idx)
          (cond ((bytevector? item)
                 (bytevector-copy! item 0
                                   bv idx
                                   (bytevector-length item))
                 (+ idx (bytevector-length item)))
                (else (bytevector-u8-set! bv idx item)
                      (+ idx 1))))
        0
        fragments-fixed)
  bv)

(define (parse-float-form float-form)
  (let ((float-string
         (fold (lambda (arg str)
                 (string-append
                  str
                  (match arg
                    (('float-integer ('base-10 n)) n)
                    (('float-decimal ('base-10 n)) (string-append "." n))
                    (('exponent "+"  ('base-10 n)) (string-append "e"  n))
                    (('exponent      ('base-10 n)) (string-append "e"  n))
                    (('exponent "-"  ('base-10 n)) (string-append "e-" n)))))
               "" float-form)))
    ;; exact->inexact is a no-op if we already have an inexact number, but
    ;; ensures we get an inexact number when we have an exact number (which we
    ;; can get from the "1." case). Returning an inexact number here is important
    ;; to avoid arithmetic suprises later.
    (exact->inexact
     (or (string->number float-string)
         (scm-error 'c-parse-error "parse-lexeme-tree"
                    "Couldn't parse expression as float: ~s"
                    (list `(float ,@args)) #f)))))


(define (resolve-escaped-char form)
  (match form
    (('base-8-char n)  (string->number n 8))
    (('base-16-char n) (string->number n 16))
    (c (char->integer
        (case (string-ref c 0)
          ((#\a) #\alarm)
          ((#\b) #\backspace)
          ((#\e) #\esc) ;; non-standard
          ((#\f) #\page)
          ((#\n) #\newline)
          ((#\r) #\return)
          ((#\t) #\tab)
          ((#\v) #\vtab)
          ((#\\) #\\)
          ;; These are valid in both strings and chars
          ((#\') #\')
          ((#\") #\"))))))

;; Takes a list of strings and escaped-char form
;; and returns a list of strings and integers
(define (resolve-string-fragment fragment)
  (match fragment
    (('escaped-char c)
     (resolve-escaped-char c))
    (fargment fragment)))

(define (parse-lexeme-tree tree)
  (match tree
    ['() '()]

    ;; Number constants
    [('base-10 n) (string->number n 10)]
    [('base-8  n) (string->number n  8)]
    [('base-16 n) (string->number n 16)]

    [('integer n ('integer-suffix suffix))
     `(as-type
       ,(parse-integer-suffix suffix)
       ,(parse-lexeme-tree n))]

    [('integer n)
     (parse-lexeme-tree n)]


    [('float args ... ('float-suffix suffix))
     `(as-type ,(parse-float-suffix suffix)
               ;; parse rest of float as if it lacked a suffix
               ,(parse-lexeme-tree `(float ,@args)))]

    [('float args ...) (parse-float-form args)]

    ;; Character literals, stored as raw integers
    ;; so mathematical operations keep working on them.
    [('char ('escaped-char c)) (resolve-escaped-char c)]

    [('char c) (char->integer (string-ref c 0))]

    [('variable var) (string->symbol var)]

    ;; normalize some binary operators to their wordy equivalent
    ;; (which also happens to match better with scheme)
    [('operator "&&") 'and]
    [('operator "&=") 'and_eq]
    [('operator "&")  'bitand]
    [('operator "|")  'bitor]
    [('operator "!=") 'not_eq]
    [('operator "||") 'or]
    [('operator "|=") 'or_eq]
    [('operator "^")  'xor]
    [('operator "^=") 'xor_eq]
    ;; Change these names to something scheme can handle better
    [('operator ".") 'object-slot]
    [('operator "->") 'dereference-slot]
    [('operator op)  (string->symbol op)]

    [('prefix-operator op)
     (case (string->symbol op)
       ((!) 'not)
       ((~) 'compl)
       ((*) 'dereference)
       ((&) 'pointer)
       ((++) 'pre-increment)
       ((--) 'pre-decrement)
       ((-) '-)
       (else (scm-error 'c-parse-error "parse-lexeme-tree"
                        "Unknown prefix operator ~s"
                        (list op) #f)))]
    [('postfix-operator op)
     (case (string->symbol op)
       [(++) 'post-increment]
       [(--) 'post-decrement]
       [else (scm-error 'c-parse-error "parse-lexeme-tree"
                        "Unknown postfix operator ~s"
                        (list op) #f)])]

    ;; Parenthesis grouping
    [('group args ...)
     (parse-lexeme-tree args)]

    [('prefix op arg)
     `(,(parse-lexeme-tree op)
       ,(parse-lexeme-tree arg))]

    [('postfix arg op)
     `(,(parse-lexeme-tree op)
       ,(parse-lexeme-tree arg))]





    ;; resolved-operator and ternary are the return "types"
    ;; of resolve-order-of-operations
    [(('resolved-operator op) args ...)
     `(,op ,@(map parse-lexeme-tree args))]

    [('ternary a b c)
     `(ternary ,(parse-lexeme-tree a)
               ,(parse-lexeme-tree b)
               ,(parse-lexeme-tree c))]




    ;; Is it OK for literal strings to be "stored" inline?
    ;; Or must they be a pointer?
    ['string #vu8(0)]
    [('string str ...)
     (-> (map resolve-string-fragment str)
         string-fragments->c-string)]

    ;; implicit concatenation of string literals
    [(('string str ...) ...)
     (-> (map resolve-string-fragment (concatenate str))
         string-fragments->c-string)]

    [('infix args ...)
     (let ((r (resolve-order-of-operations
               (flatten-infix (cons 'infix args)))))
       (parse-lexeme-tree r))]


    [('funcall function ('group arguments))
     `(funcall ,(parse-lexeme-tree function)
               ,(parse-lexeme-tree arguments))]

    [(('variable "struct") ('variable value) ..1)
     `(struct-type ,@(map string->symbol value))
     ]

    ;; A list of variables. Most likely a type signature
    ;; [(('variable value) ..1)
    ;;  ]

    ;; A typecast with only variables must (?) be a typecast?
    [(('group groups ..1) ... value)
     (fold-right (lambda (type done) `(as-type ,type ,done))
                 (parse-lexeme-tree value)
                 (map group-body->type groups))]

    ;; Type name resolution?
    ;; https://en.wikipedia.org/wiki/C_data_types
    ;; base types with spaces:
    ;; =======================
    ;; [[un]signed] char
    ;; [[un]signed] short [int]
    ;; [[un]signed] int
    ;; [un]signed [int]
    ;; [[un]signed] long [int]
    ;; [[un]signed] long long [int]
    ;; float
    ;; [long] double

    ;; https://en.wikipedia.org/wiki/Type_qualifier
    ;; qualifiers
    ;; const
    ;; volatile
    ;; restrict
    ;; _Atomic


    ;; Storage specifiers
    ;; auto
    ;; register
    ;; static
    ;; extern

    ;; struct <typename>
    ;; enum <typename>
    ;; union <typename>

    ;; https://en.wikipedia.org/wiki/C_syntax
    ;; int (*ptr_to_array)[100]


    [(? symbol? bare)
     (scm-error 'c-parse-error
                "parse-lexeme-tree"
                "Naked literal in lex-tree: ~s"
                (list bare)
                #f)]

    [form
     (scm-error 'c-parse-error
                "parse-lexeme-tree"
                "Unknown form in lex-tree: ~s"
                (list form) #f)
     ]))

;; https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B
;; https://en.cppreference.com/w/c/language/operator_precedence

(define order-of-operations
  (reverse
   ;; This is only for binary operations
   `((-> ,(symbol #\.))
     ;; All unary procedures go here, incnluding typecasts, and sizeof
     (* / %)
     (+ -)
     (<< >>)
     (< <= > >=)
     (== != not_eq)
     (& bitand)
     (^ xorg)
     (,(symbol #\|) bitor)
     (&& and)
     (,(symbol #\| #\|) or)
     (? :)
     (= += -= *= /= %= <<= >>= &= ^= ,(symbol #\| #\=)
        and_eq or_eq xor_eq)
     (,(symbol #\,))
     )))

;; a.b->c.d (. (-> (. a b) c) d)
;; 2 * 3 / 4 * 5 => (* (/ (* 2 3) 4) 5)
;;         eller => (* 2 (/ 3 4) 5)

(define* (resolve-order-of-operations
          tree optional: (order order-of-operations))

  (if (null? order)
      (scm-error 'c-parse-error
                 "resolve-order-of-operations"
                 "Out of operations to resolve when resolving expression ~s"
                 (list tree) #f)
      (match tree
        [('fixed-infix form) form]
        [('fixed-infix forms ...)
         (match (split-by-one-of forms (car order))
           [(group)
            (resolve-order-of-operations (cons 'fixed-infix group)
                                         (cdr order))]
           [(a ('? b ...) (': c ...))
            `(ternary ,(resolve-order-of-operations (cons 'fixed-infix a) (cdr order))
                      ,(resolve-order-of-operations (cons 'fixed-infix b) (cdr order))
                      ,(resolve-order-of-operations (cons 'fixed-infix c) (cdr order)))]
           [(first rest ...)
            ;; TODO this is only valid for the associative operators (+, ...)
            ;; but not some other (<, ...)
            (if (apply eq? (map car rest))
                (let ((op (caar rest)))
                  `((resolved-operator ,op)
                    ,@(map (lambda (x) (resolve-order-of-operations (cons 'fixed-infix x)
                                                               (cdr order)))
                           (cons first (map cdr rest)))))
                (fold (lambda (item done)
                        (let ((operator args (car+cdr item)))
                          `((resolved-operator ,operator)
                            ,done ,(resolve-order-of-operations
                                    (cons 'fixed-infix args)
                                    (cdr order)))))
                      (resolve-order-of-operations (cons 'fixed-infix first)
                                                   (cdr order))
                      rest))])])))

;; 1 * 2 / 3 * 4
;; ⇒ ((1) (* 2) (/ 3) (* 4))
;; (1)
;; (* (1) 2)
;; (/ (* (1) 2) 3)
;; (* (/ (* (1) 2) 3) 4)

;; Flatens a tree of infix triples. Stops when it should.
;; (parenthesis, function calls, ...)
(define (flatten-infix form)
  (cons 'fixed-infix
   (let loop ((form form))
     (match form
       [('infix left op ('infix right ...))
        (cons* left
               (parse-lexeme-tree op)
               (loop (cons 'infix right)))]

       [('infix left op right)
        (list left
              (parse-lexeme-tree op)
              right)]

       [('infix form) form]

       [other (scm-error 'c-parse-error
                         "flatten-infix"
                         "Not an infix tree ~a"
                         (list other)
                         #f)]))))